

1. Datos Generales de la Asignatura

Nombre de la asignatura		Clave	Ciclo Nominal
Laboratorio de Química Inorgánica		205261	III
Departamento Académico	Ciencias básicas		

CarácterPrácticaTipoObligatoria	
---------------------------------	--

Asignaturas antecedentes	Asignaturas consecuentes
Química Inorgánica	Ninguna

Horas teóricas	Horas prácticas	Horas de trabajo independiente	Horas por semana	Semanas por semestre	Horas por semestre	Valor en Créditos
0	3	2	3	16	48	3

Revisores del programa	Fecha de revisión	Fecha de visto bueno del H. Consejo Técnico
M.C. Ricardo Adolfo Manivel Chávez Dra. Adriana Avilés Martínez	9 de julio de 2024	11/Julio/2024

2. Presentación de la Asignatura

Contextualización de la asignatura

La Química Inorgánica es una disciplina clave en la ingeniería química, ya que muchos procesos industriales y materiales se basan en principios de química inorgánica. El laboratorio de Química Inorgánica prepara a los futuros ingenieros químicos para colaborar en proyectos como:

-Desarrollar Nuevos Materiales: Comprender y desarrollar nuevos materiales con aplicaciones en diversas industrias, como la electrónica, la farmacéutica, y la de energía.

- -Optimizar Procesos Industriales: Aplicar conocimientos de química inorgánica para mejorar la eficiencia y sostenibilidad de procesos industriales, como la producción de metales y la catálisis.
- -Contribuir a la Innovación Tecnológica: Participar en la investigación y desarrollo de nuevas tecnologías y soluciones innovadoras que aborden desafíos globales, como la producción de energía limpia y el tratamiento de aguas.
- Por lo que el laboratorio de Química Inorgánica en la licenciatura de ingeniería química es esencial para formar profesionales capacitados, capaces de aplicar principios científicos a problemas reales y contribuir significativamente al avance de la industria y la tecnología.

Propuesta didáctico metodológica			
Propuesta didáctico-metodológica			
Con la conducción del docente	Independiente	Modalidades informáticas (virtual)	
 Organización del Curso 	1.Actividades Pre-Laboratorio	- Cuestionarios Interactivos: Implementar	
-Distribución del Tiempo: Cronograma de	-Lecturas Asignadas:	cuestionarios y exámenes en línea que	
prácticas a desarrollar, cada una enfocado en	Proporcionar a los estudiantes	evalúen tanto el conocimiento teórico	
un conjunto específico de técnicas y conceptos	lecturas preliminares sobre el	como la comprensión práctica de los	
de química inorgánica.	experimento y los conceptos	experimentos realizados virtualmente.	
-Grupos de Trabajo: Formar grupos pequeños	teóricos involucrados.	- Portafolios Digitales: Solicitar a los	
de estudiantes para fomentar la colaboración y	-Cuestionarios Pre-Laboratorio:	estudiantes la creación de portafolios	
el aprendizaje mutuo. Rotar los roles dentro de	Implementar cuestionarios para	digitales donde documenten sus	
cada grupo (coordinador, registrador, técnico)	evaluar la comprensión previa	experimentos, resultados y reflexiones.	
para asegurar una experiencia equilibrada.	de los estudiantes y asegurar		
Desarrollo de las Prácticas	que estén preparados para el		
-Demostraciones Prácticas: Realizar	experimento.		
demostraciones de técnicas y procedimientos			
antes de que los estudiantes realicen los	Actividades Post-Laboratorio		
experimentos por su cuenta.	-Informes de Laboratorio:		
-Manual de Laboratorio: Proveer manual	Requerir la elaboración de		
detallado con los procedimientos, materiales	informes detallados que		
necesarios y precauciones de seguridad.	incluyan el objetivo del		
-Supervisión Activa: Circular por el laboratorio,	experimento, procedimientos,		
proporcionando asistencia y retroalimentación	resultados, análisis y		

continua a los estudiantes durante la realización de los experimentos.	conclusionesDiscusión en Clase: Organizar sesiones de discusión para analizar los resultados obtenidos, resolver dudas y relacionar los experimentos con la teoría estudiada.	
--	---	--

3. Atribuciones del Programa

Objetivo General

Desarrollar en los estudiantes la capacidad de comprender, aplicar y analizar los principios fundamentales de la Química Inorgánica a través de prácticas de laboratorio, fomentando habilidades en la identificación y caracterización de sustancias, la comprensión de la periodicidad química, la determinación de propiedades en función del tipo de enlace, la elaboración de modelos atómicos y moleculares, y la interpretación de reacciones químicas y equilibrios. Además, se busca que los estudiantes adquieran competencias en el manejo seguro de materiales y equipos de laboratorio, así como en la preparación y análisis de soluciones químicas, fortaleciendo su capacidad de trabajo en equipo y su integración en el ámbito científico y profesional de la ingeniería química.

Objetivos Específicos (Indicadores)

- 1. Organización y Seguridad en el Laboratorio
 - -Organizar y coordinar grupos de trabajo eficientes.
 - -Identificar y aplicar las normas de seguridad en el laboratorio.
- 2. Conocimiento del Material de Laboratorio
 - -Identificar y utilizar correctamente el material de laboratorio.
 - -Conocer con las técnicas básicas de laboratorio básicas.
- 3. Separación y Análisis de Mezclas
 - -Realizar técnicas de separación de mezclas.
 - -Determinar el porcentaje de los componentes de una mezcla problema.
- 4. Comprensión de la Periodicidad Química

- -Relacionar las posiciones de los elementos en la tabla periódica con sus propiedades.
- -Aplicar la nomenclatura química adecuada.
- 5. Determinación de Propiedades en Función del Tipo de Enlace
 - Evaluar propiedades de sustancias según el tipo de enlace químico.
- 6. Construcción y Análisis de Modelos Atómicos
 - -Construir modelos atómicos basados en teorías establecidas.
- 7. Análisis de Geometría Molecular
 - -Utilizar fórmulas de Lewis y modelos de repulsión de pares de electrones para predecir geometría molecular.
 - -Determinar la polaridad de moléculas mediante la geometría molecular.
- 8. Determinación de Fórmulas Empíricas
 - -Calcular la fórmula empírica de compuestos.
 - -Diferenciar entre sustancias iónicas y moleculares.
- 9. Preparación y Análisis de Soluciones Químicas
 - -Preparar soluciones químicas a diferentes concentraciones.
 - -Aplicar conceptos teóricos a la práctica de preparación de soluciones.
- 10. Estudio de Estequiometria y Grado de Hidratación
 - -Determinar el número de moléculas de agua en sales hidratadas.
- 11. Identificación de Reacciones Químicas
 - -Identificar y diferenciar tipos de reacciones químicas básicas.
- 12. Comprensión de Agentes Oxidantes y Reductores
 - -Demostrar el concepto de agentes oxidantes y reductores.
- 13. Estudio de Equilibrio Químico
 - -Analizar la influencia de diferentes factores sobre el equilibrio de precipitación y ácido-base.
- 14. Determinación y Comprensión del pH
 - -Observar y predecir el comportamiento ácido-básico de sustancias en solución.
 - -Conocer y aplicar distintos métodos de evaluar pH.
- 15. Comprensión de Ácidos, Bases y Sales
 - -Comprender conceptos de ácido, base y anfolito según Brønsted-Lowry.
 - -Plantear y comparar la fuerza de ácidos mediante constantes de equilibrio.

Aportación a los Atributos de Egreso del Programa Educativo				
Atributo	Nivel de Alcance	Evidencia		
1. Resolución de problemas.				
2. Diseño de Ingeniería				
3. Experimentación	Medio	Examen y reporte de prácticas		
4. Comunicación				
5. Ética				
6. Formación Continua				
7. Trabajo Colaborativo	Medio	Rúbricas de trabajo colaborativo llenadas por cada equipo de trabajo.		

4. Perfil académico del docente

Grado académico	Licenciatura en Ingeniería Química o áreas a fines	
Experiencia	Docencia dos años de experiencia	

5. Contenido temático

Prácticas (Temas)	Subtemas
1.Reconocimiento de material de laboratorio.	 a) Estrategias para agrupar a los alumnos en equipos de trabajo para el ciclo escolar. b) Actividades de lectura comentada y dramatización de las normas fundamentales del laboratorio en equipos. c) Descripción de las características esenciales y la organización del laboratorio para la realización de prácticas.
2. Separación y determinación porcentual	a) Separación, identificación y determinación del porcentaje de los componentes de una

de los componentes de una mezcla.	mezcla problema.
3. Periodicidad química	a) Análisis de cómo las posiciones de los elementos en la tabla periódica se relacionan con su nomenclatura y sus propiedades físicas y químicas.
4. Propiedades: de acuerdo al tipo de enlace	a) Determinación de Propiedades en Función del Tipo de Enlace
5. Elaboración de modelos atómicos.	a) Construcción modelos de átomos, en concordancia con las diferentes teorías atómicas antiguas y actuales.
6. Geometría molecular	a) Fórmulas de Lewis b) Modelo de Repulsión de Pares de Electrones de la Capa de Valencia (VSEPR) c) Polaridad Molecular d) Modelos Moleculares e) Aplicaciones de la Geometría Molecular
7. Fórmula empírica de una sustancia	a) Determinación la fórmula empírica de un compuesto, distinguir entre sustancias iónicas y sustancias moleculares.
8. Soluciones químicas	a) Aplicación de conceptos teóricos en la preparación de soluciones químicas a diferentes concentraciones.
9. Estequiometria I: grado de hidratación de una sal	a) Determinación del número de moléculas de agua contenidas como "agua de hidratación molecular" en la sal proporcionada.
10. Reacciones químicas básicas	a) Identificación y diferenciación los diferentes tipos de reacciones químicas básicas que se pueden presentar en diferentes compuestos químicos.
11. Agentes oxidantes y	a) Demostración Práctica de Conceptos de Agentes Oxidantes y Reductores, Oxidación,

reductores.	Reducción, Oxigenación e Hidrogenación.
12. Equilibrio químico I:	a) Reactivos y Cationes del Grupo I
influencia de diferentes	b) Influencia de la Temperatura en el Equilibrio de Precipitación
factores sobre el equilibrio	c) Identificación de Reacciones
de precipitación.	d) Selección de Métodos de Separación e Identificación
13. Equilibrio químico II: influencia del pH en un equilibrio ácido-base	a) Principio de Le Chatelier en un Equilibrio Ácido-Base b) Influencia de la Concentración de Iones H ⁺ y OH ⁻
14. Determinación de pH	a) Comportamiento Ácido o Básico de Sustancias en Solución Acuosa b) Predicción del Comportamiento Ácido o Básico c) Uso del Medidor de pH
15. Ácidos, bases y sales	a) Conceptos de Ácido, Base y Anfolito según Brönsted-Lowry b) Constante de Equilibrio en Reacciones Ácido-Base c) Comparación de la Fuerza de los Ácidos d) Efecto del ión Común en la Acidez o Alcalinidad

6. Criterios de evaluación

Criterios a Evaluar	Instrumento de evaluación	Porcentaje
Reportes	Reportes	70%
Participación	Cotejo	10%
Examen	Examen	20%
Porcentaje final		100%

7. Fuentes de información

Básica

1. ADAMS Y RAYNOR

Título: Química Inorgánica Práctica Avanzada

Editorial: Reverté, S.A.

Año: 1966

2. BARGALLÓ MODESTO

Título: Tratado de Química Inorgánica

Editorial: Porrúa, S.A.

3. CARRILLO CHÁVEZ MYRNA

Título: Micro escala, Química General Manual de Laboratorio

Editorial: Prentice Hall

Año: 2002

4. CHANG RAYMOND

Título: Conceptos esenciales de la Química General

Editorial: McGraw-Hill

Año: 2006

5. GARCÍA GUERRERO MIGUEL

Título: Técnicas para el Laboratorio de Química en Micro escala

Editorial: Facultad de Química UNAM

Año: 1996

6. GERT G. SCHLESSINGER

Título: Preparación de Compuestos Inorgánicos en el Laboratorio

Editorial: Continental, S.A.

Año: 1965

7. POLLARD McOMIE

Título: Chromatographic Methods of Inorganic Analysis

Editorial: Butterworths, London

Año: 1953

8. TORAL MARÍA TERESA

Título: Química Inorgánica Experimental

Editorial: Aguilar, Madrid

Año: 1959

9. V. SEMISHIN

Título: Tested Demonstrations in Chemistry *Editorial:* Journal of Chemical Education

Año: 1962

10. WHITTEN, DAVIS, STANLEY

Título: Química

Editorial: McGraw-Hill

Año: 2008

Complementaria

1. Miessler, Gary L., Fischer, Paul J., Tarr, Donald A.

Título: Inorganic Chemistry

Editorial: Pearson

Año: 2021

2. Housecroft, Catherine E., Sharpe, Alan G.

Título: Inorganic Chemistry

Editorial: Pearson

Año: 2020

3. Wulfsberg, Gary

Título: Inorganic Chemistry: Principles of Structure and Reactivity

Editorial: University Science Books

Año: 2018

Descripción: Un enfoque detallado y accesible de la estructura y reactividad de los compuestos inorgánicos, ideal para estudiantes avanzados.

4. Mingos, David Michael P.

Título: Essentials of Inorganic Chemistry

Editorial: Wiley

Año: 2019.

5. Reedijk, Jan (Editor)

Título: Comprehensive Inorganic Chemistry II

Editorial: Elsevier

Año: 2013 (revisión en 2018)