

1. Datos Generales de la Asignatura

Nombre de la asignatura		Clave	Ciclo Nominal
Tratamiento de Agua		205388	IX
Departamento Académico	Ingeniería Aplicada		

Carácter	Teórica	Tipo	Optativa
		•	•

Asignaturas antecedentes	Asignaturas consecuentes
Ninguna	Ninguna

Horas teóricas	Horas prácticas	Horas de trabajo independiente	Horas por semana	Semanas por semestre	Horas por semestre	Valor en Créditos
3	0	0	3	3	48	3

Revisores del programa	Fecha de revisión	Fecha de visto bueno del H. Consejo Técnico
José Apolinar Cortés Gabriel Martínez Herrera	Marzo 2022	

2. Presentación de la Asignatura

Contextualización de la asignatura

Esta materia es para los estudiantes que han completado las materias obligatorias del plan de Ingeniería Química y que deciden llevar la terminal en Ingeniería Ambiental.

En este curso se revisan los tópicos de los diferentes Procesos Unitarios y Operaciones Unitarias que le permiten al estudiante capacitarse sobre el saneamiento de las aguas residuales, agua potable y de proceso.

En el curso se aborda con un alto grado de profundidad los tópicos necesarios, para darle al estudiante las herramientas necesarias para solución de problemas en la industria, instancias municipales, federales y de investigación, en lo referente al tratamiento de aguas

Propuesta didáctico-metodológica			
Con la conducción del docente	Independiente	Modalidades informáticas (virtual)	
Cátedras frente a grupo		Uso de las Tecnologías de la Información	
		para la transmisión del conocimiento	
Tareas		Solución de problemas tipo	

3. Atribuciones del Programa

Objetivo General

Comprender y dominar los procesos de tratamiento de agua, tanto los fisicoquímicos como los biológicos para especificar y/o diseñar equipos y procesos de tratamiento de agua.

Objetivos Específicos (Indicadores)

- Identificar los Procesos Unitarios y las Operaciones Unitarias, y sus principios que los rigen, así como sus variables más importantes.
- Desarrollar la habilidad para la solución de los problemas de tratamientos de aguas, utilizando las fuentes de información de; artículos científicos, libros, electrónica y problemas actuales.
- Analizar los resultados obtenidos con el fin de interpretarlos en el contexto y proponer nuevas alternativas de solución.

Aportación a los Atributos de Egreso del Programa Educativo				
Atributo	Nivel de Alcance	Evidencia		
Resolución de problemas.	Avanzado	Exámenes, tareas y ejercicios en clase		
Diseño de Ingeniería				
3. Experimentación				
4. Comunicación				

5. Ética	
Formación Continua	
Trabajo Colaborativo	

4. Perfil académico del docente

Grado académico	Tener grado de licenciatura, maestría y/o doctorado en Ingeniería Química.
Experiencia	Tener por lo menos tres años de experiencia en la docencia, investigación o área industrial, además
Laperiericia	de demostrada aptitud, dedicación y eficiencia.

5. Contenido temático

Temas	Subtemas
1. Procesos Fisicoquímicos	 a. Introducción. b. Etapas del tratamiento físico-químico. c. Coagulación. d. Floculación. e. Sedimentación y Flotación f. Filtración g. Desinfección
2. Procesos Biológicos	 a. Introducción a los procesos biológicos b. Principales tipos de reactores biológicos c. Cinética de la ingeniería bioquímica d. La ecuación de velocidad biológica e. Determinación de los parámetros de un sistema biológico f. Características de los procesos con flóculos microbianos g. Reactores que contienen películas microbianas

h. Reactores que contienen enzimas en solución
 Reactores que contienen sistemas con enzimas inmovilizados
j. Reactores de percolación (un ejercicio de diseño)

6. Criterios de evaluación

Criterios a Evaluar	Instrumento de evaluación	Porcentaje
Resolución de Problemas mediante tres exámenes	Aplicación de Exámenes	80%
Resolución de Problemas mediante tareas	Solución de Tareas	20%
Porcentaje final		100%

7. Fuentes de información

Básica

- Physicochemical Processes: For Water Quality Control, Walter J. Weber John Wiley & Sons; 1a edición, 1972)
- Industrial Water Pollution Control, W.Wesley Eckenfelder, McGraw-Hill, 3a edición, 1999.
- Wastewater Engineering: Treatment and Reuse, Metcalf & Eddy Inc., George Tchobanoglous, Franklin L Burton, H.David Stensel, McGraw-Hill, 4a edición, 2002.
- Unit Operations and Processes in Environmental Engineering, Tom D. Reynolds, Paul Richards, CL Engineering, 2a edición, 1995

Complementaria