

1. Datos Generales de la Asignatura

Nombre de la asignatura		Clave	Ciclo Nominal
Métodos Numéricos		205266	III
Departamento Académico	Ciencias Básicas		

Carácter	Teórica	Tipo	Obligatoria
		•	3

Asignaturas antecedentes	Asignaturas consecuentes
Programación y Computación	Ninguna

Horas teóricas	Horas prácticas	Horas de trabajo independiente	Horas por semana	Semanas por semestre	Horas por semestre	Valor en Créditos
4	0	0	4	16	64	4

Revisores del programa	Fecha de revisión	Fecha de visto bueno del H. Consejo Técnico
José Gerardo Medina Heredia Roberto Guerra González	Marzo 2022	

2. Presentación de la Asignatura

Contextualización de la asignatura

Los contenidos de la asignatura Métodos Numéricos ofrecida a los alumnos de la Licenciatura en Ingeniería Química proporcionan los conocimientos básicos y herramientas de técnicas numéricas que el alumno requiere para comprender, expresar y resolver problemas a través de técnicas numéricas en el área de Ingeniería Química.

Propuesta didáctico-metodológica		
Con la conducción del docente	Independiente	Modalidades informáticas (virtual)
El docente explicará y desarrollará los	Los estudiantes resolverán	
conocimientos requeridos en la asignatura con	ejercicios y problemas	
ejemplos y exposiciones que promueven el		
análisis y solución de problemas en cada tema.	temas desarrollados en la	
	asignatura.	

3. Atribuciones del Programa

Objetivo General

Entender el principio de cada método numérico, ver el desarrollo de ejemplos aplicados, entender en forma sencilla y didáctica su solución a través de las herramientas algorítmicas, mostradas paso a paso, y resolver estos ejemplos a través del uso e implementación en computadora

Objetivos Específicos (Criterios de desempeño)

- 1. Identificar y catalogar los diferentes tipos de problemas que se plantean en Ingeniería, resultado de la aplicación de las leyes básicas de conservación.
- 2. Desarrollar las habilidades necesarias y cuente con las herramientas básicas e intermedias para resolver la mayor parte de los problemas encontrados en Ingeniería, a través de ejemplos aplicados y resueltos por medio de la aplicación de la mayoría de los métodos aproximativos y del uso de la computadora como una gran herramienta de apoyo.
- 3. Manejar adecuadamente las herramientas de los métodos numéricos aplicados a la resolución de problemas en Ingeniería que impliquen soluciones aproximadas o cálculos repetitivos y complejos.

Aportación a los Atributos de Egreso del Programa Educativo
Atributo
Nivel de Alcance
Evidencia

1. Resolución de problemas.
Inicial
Examen

2. Diseño de Ingeniería
Inicial
Examen
3. Experimentación
Inicial
Examen
4. Comunicación
5. Ética

6. Formación Continua	
Trabajo Colaborativo	

4. Perfil académico del docente

Grado académico	Licenciatura en Ingeniería Química o áreas afines.
Experiencia	Dos años de experiencia docente en Educación Superior.

5. Contenido temático

Temas	Subtemas
1. Errores en la	1.1. Introducción.
programación de	1.2. Errores en programación.
computadoras	Errores de lógica y de ejcución.
	Errores en los cálculos numéricos.
	1.3. Convergencia y estabilidad.
	1.4. Estilo de programación.
Localización de	2.1. Introducción.
Raíces de	2.2. Métodos algebraicos.
Ecuaciones	Solución de Ecuaciones cuadráticas.
	Matemática de números complejos.
	Solución de Ecuaciones cúbicas – Método de Cardano.
	2.3. Implementación en Computadora.
	Implementación en Excel.
	Implementación en Matlab.
	2.4. Métodos de convergencia explícita.
	Método de sustituciones sucesivas.
	Método de Wegstein.

O. F. Miles de anciene (dos mentes iniciales)	
2.5. Métodos de encierro (d9s puntos iniciales).	
Método de bisección o medio intervalo.	
Implementación en Excel.	
Implementación en Matlab.	
Método de la Falsa Posición (regula falsi).	
2.6. Métodos de la pendiente (un punto inicial).	
Método de Newton – Raphson.	
Implementación en Excel.	
Implementación en Matlab.	
Método de la secante.	
Implementación en Excel.	
2.7. Resumen de los métodos de uno y dos puntos.	
2.8. Funciones Interconstruidas.	
Método iterativo de la búsqueda objetivo - Excel.	
Método de optimización de la búsqueda objetivo - Matlab.	
3.1. Estado de equilibrio de una reacción reversible.	
Método de Newton – Raphson.	
Implementación en Excel.	
Implementación en Matlab.	
Método de la secante.	
Implementación en Excel.	
3.2. Equilibrio homogéneo y heterogéneo.	
3.3. Equilibrios de precipitación.	
3.4. Solución matricial.	
3.5. Implementación en computadora.	
Implementación en Excel.	
Implementación en Matlab.	
3.6. Solución por métodos iterativos: eliminación de Gauss, reducción de	
Gauss-Jordan.	

	3.7. Implementación en computadora.
	Implementación en Matlab.
	3.8. Obtención de la inversa de una matriz.
	Implementación en Matlab.
	3.9. Gauss-Jordan con pivoteo parcial por filas.
	3.10. Normas de matrices.
	3.11. Números de condición y matriz singular.
4. Sistemas de	4.1. Métodos iterativos sin derivadas parciales.
Ecuaciones	Método de Gauss-Jacobi (Método de sustituciones sucesivas).
Simultáneas no	Implementación en Excel.
Lineales	Implementación en Matlab.
	Método de Wegstein multivariable.
	4.2. Métodos iterativos con derivadas parciales.
	Aproximación polinomial mediante la fórmula de Taylor.
	Método de Newton – Raphson multivariable.
	Aproximación numérica del Jacobiano.
	4.3. Implementación en computadora.
	Implementación en Excel.
	Representación gráfica en 3-D (x, y, z) – Matlab.
	Gráfico de contorno en el plano (x, y) – Matlab.
	Implementación en Matlab.
	4.4. Funciones interconstruidas.
	Método iterativo de la búsqueda objetivo – Excel.
	Método de optimización de la búsqueda objetivo – Matlab. 4.5. Valores iniciales.
E latemate it is de	
5. Interpolación de	5.1. Interpolación simple.
Datos	Interpolación lineal.
	Interpolación polinomial.
	5.2. Implementación en computadora.

	Implementación en Matlab.	
	5.3. Polinomios interpolantes de Lagrange.	
	5.4. Interpolación de superficies.	
	Interpolación bilineal.	
	Interpolación bicuadrática.	
	5.5. Implementación en computadora.	
	Implementación en Matlab.	
6. Ajuste de Datos	6.1. Introducción.	
(Método de Mínimos	6.2. Ajuste (regresión) lineal.	
Cuadrados)	6.3. Ajuste polinomial.	
	6.4. Parámetros estadísticos para un "buen ajuste".	
	6.5. Formulación matricial.	
	6.6. Implementación en computadora.	
	Implementación en Excel.	
	Implementación en Matlab.	
	6.7. Funciones interconstruidas.	
	Función interconstruida en Excel.	
	Función interconstruida en Matlab.	
	6.8. Transformaciones lineales.	
7. Integración Numérica	7.1. Introducción.	
_		
(Cuadratura		
Numérica)	7.3. Métodos múltiples o compuestos de integración.	
	7.4. Implementación en computadora.	
	Implementación en Excel.	
	Implementación en Matlab.	
	7.5. Cálculo de promedios.	
	7.6. Cuadratura Gaussiana.	
	7.7. Implementación en computadora.	
	Implementación en Excel.	

	Implementación en Matlah		
	Implementación en Matlab.		
	7.8. Estimación del Error.		
8. Ecuaciones	8.1. Introducción.		
Diferenciales	Conceptos de la derivada de la integral.		
Ordinarias (EDO's)	8.2. Ecuaciones diferenciales ordinarias (EDO's).		
con Valor Inicial,	Método de Euler (Runge – Kutta de 1er orden).		
Solución Numérica	Método de Euler mejorado (Runge – Kutta de 2o orden).		
	Método de Runge – Kutta de 4º. orden.		
	8.3. Métodos de Runge – Kutta.		
	8.4. Implementación en computadora.		
	Implementación en Excel.		
	Implementación en Matlab.		
	8.5. Errores en la aproximación numérica.		
	8.6. Sistemas de EDO's de 1er. orden.		
	Método de Euler aplicado a sistemas.		
	Método de Runge – Kutta de 4º. orden aplicado a sistemas.		
	8.7. Solución numérica a sistemas de EDO's.		
	8.8. Implementación en computadora.		
	Implementación en Matlab.		
	8.9. Estabilidad numérica.		

6. Criterios de evaluación

or oritorioo do ovaridación		
Criterios a Evaluar	Instrumento de evaluación	Porcentaje
Exámenes	Exámenes	60%
Tareas	Lista de cotejo	40%
Porcentaje final		100%

7. Fuentes de información

Básica

Chapra, S. C. y R. P. Canale (2007), Métodos Numéricos para ingenieros, 5/e, McGraw-Hill, México.

Nieves, A. y F. C. Domínguez (2007), Métodos Numéricos aplicados a la Ingeniería, 3/e, Grupo Editorial Patria, México.

Cutlip, M. B. & M. Shacham (2008), Resolución de problemas en Ingeniería Química y Bioquímica con POLYMATH, Excel y MATLAB, 2/e, Prentice Hall, Madrid.

Constantinides, A. & N. Mostoufi (1999), Numerical Methods for Chemical Engineers with MATLAB Applications, Prentice Hall PTR, Upper Saddle River, New Jersey.

Burden, R. L., y J. D. Faires (2002), Análisis Numérico, 7/e, Thomson, México.

Maron, M. J. y R. J. López (1995), Análisis numérico - Un enfoque práctico, 3/e, CECSA, México.

Complementaria