



### 1. Datos Generales de la Asignatura

| Nombre de la asignatura |                  | Clave  | Ciclo Nominal |
|-------------------------|------------------|--------|---------------|
| Física II               |                  | 205262 | II            |
| Departamento Académico  | Ciencias Básicas |        |               |

| Carácter | Teórica | Tipo | Obligatoria |
|----------|---------|------|-------------|
|          |         | •    | 9           |

| Asignaturas antecedentes | Asignaturas consecuentes |
|--------------------------|--------------------------|
| Física I                 | Laboratorio de Física    |

| Horas<br>teóricas | Horas<br>prácticas | Horas de trabajo independiente | Horas por semana | Semanas por semestre | Horas por semestre | Valor en<br>Créditos |
|-------------------|--------------------|--------------------------------|------------------|----------------------|--------------------|----------------------|
| 4                 | 0                  | 0                              | 4                | 16                   | 64                 | 4                    |

| Revisores del programa                                     | Fecha de revisión | Fecha de visto bueno del H. Consejo Técnico |
|------------------------------------------------------------|-------------------|---------------------------------------------|
| Dr. Rafael Huirache Acuña<br>M.M.E. José Luis Tapia Huerta | Marzo 2022        |                                             |

### 2. Presentación de la Asignatura

### Contextualización de la asignatura

Los contenidos ofrecidos por la asignatura de Física II para los alumnos de la Licenciatura en Ingeniería Química proporcionan los conocimientos básicos relacionados con electricidad y magnetismo dando continuidad a los contenidos de la materia de Física I. La asignatura tiene el propósito de contribuir en la formación de Ing. Químicos competentes, críticos y reflexivos, a partir del conocimiento del universo físico y motivando al estudiante a generar modelos y soluciones que le permitan explicar los fenómenos físicos que observan.





| Propuesta didáctico-metodológica                                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Con la conducción del docente                                                                                                                                                                                                                                                     | Independiente                                                                                                              | Modalidades informáticas (virtual)                                                                                     |  |  |
| Medios didácticos: presentación en powerpoint, TAC (Tecnologías del aprendizaje y del conocimiento), TIC (Tecnología de la información y conocimiento), TEP (Tecnologías para el empoderamiento y la participación). Exposición del profesor Trabajo individual Trabajo en equipo | Revisión de literatura Resolución de problemas Trabajos en equipo Elaboración de mapas conceptuales Investigación de temas | Uso de herramientas virtuales para reforzar el aprendizaje de los temas.  Actividad asíncrona  Plataforma google Meet. |  |  |

#### 3. Atribuciones del Programa

### **Objetivo General**

Al finalizar el curso el estudiante deberá contar con las bases de la física para poder analizar los fenómenos que se relacionan con las cargas eléctricas, estáticas y con los circuitos de corriente continua y corriente alterna.

#### **Objetivos Específicos (Indicadores)**

- 1. Aplicar la ley de Coulomb en la solución de problemas en los que están presentes las cargas eléctricas.
- 2. Aplicar el concepto de campo eléctrico en la solución de problemas de cargas puntuales.
- 3. Solucionar problemas de flujo eléctrico utilizando la Ley de Gauss.
- 4. Analizar y resolver problemas relacionados con potencial eléctrico, energía potencial eléctrica, capacitores y dieléctricos utilizando el concepto de capacitancia.
- 5. Aplicar el concepto de FEM y las reglas de Kirchhoff en la solución de circuitos eléctricos que contengan mallas.
- 6. Comprender los conceptos de campo magnético, inducción y fuerza magnética.
- 7. Aplicar la ley de Ampere en la solución de problemas relacionados con fuerzas magnéticas sobre cargas en movimiento o sobre conductores que transportan corrientes.





- 8. Aplicar la ley de Faraday en la solución de problemas que involucran FEM y corriente.
- 9. Solucionar problemas que involucran flujo magnético a partir del concepto de inductancia.
- 10. Aplicar el concepto de FEM alterna en el cálculo de la corriente alterna, potencia y resonancia de circuitos.

| Aportación a los Atributos de Egreso del Programa Educativo |                  |            |  |
|-------------------------------------------------------------|------------------|------------|--|
| Atributo                                                    | Nivel de Alcance | Evidencia  |  |
| Resolución de problemas.                                    | 1                | Evaluación |  |
| Diseño de Ingeniería                                        |                  |            |  |
| 3. Experimentación                                          | I                | Prácticas  |  |
| 4. Comunicación                                             |                  |            |  |
| 5. Ética                                                    |                  |            |  |
| 6. Formación Continua                                       |                  |            |  |
| 7. Trabajo Colaborativo                                     | I                | Exposición |  |

#### 4. Perfil académico del docente

| Grado académico | Licenciatura o carrera afín |
|-----------------|-----------------------------|
| Experiencia     | 2 años                      |

#### 5. Contenido temático

| Temas           | Subtemas                                                                                                                                                                                                                                 |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Antecedentes | <ul> <li>a) Conceptos, generación, transmisión y distribución de carga eléctrica, conductores y dieléctricos.</li> <li>b) Aplicar la Ley de Coulomb en la solución de problemas en los que están presentes cargas eléctricas.</li> </ul> |  |  |





|     |                                                   | c) Elementos utilizados en la generación, transmisión y distribución de la energía y dipolos.                                                                                                                                           |  |
|-----|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2.  | Campo eléctrico                                   | <ul> <li>a) Instrumentos de medición, campo eléctrico, líneas de fuerza, carga puntual en un dipolo eléctrico.</li> <li>b) Aplicar el concepto de campo eléctrico en la solución de problemas de cargas puntuales y dipolos.</li> </ul> |  |
| 3.  | Ley de Gauss                                      | a) Aplicar la ley de gauss en la solución de problemas de flujo eléctrico.                                                                                                                                                              |  |
| 4.  | Potencial eléctrico y energía potencial eléctrica | a) Aplicar los conceptos de potencial eléctrico y de energía potencial eléctrica en la solución de problemas que involucren una carga puntual y grupo de cargas.                                                                        |  |
| 5.  | Capacitancia                                      | a) Aplicar el concepto de capacitancia a la solución de problemas relacionados con capacitores y dieléctricos.                                                                                                                          |  |
| 6.  | Fuerza electromotriz                              | a) Aplicar el concepto de FEM y las reglas de Kirchhoff, en la solución de circuitos eléctricos que contengan mallas.                                                                                                                   |  |
| 7.  | Campo y fuerza<br>magnética                       | a) Explicar los conceptos de campo magnético, inducción magnética y fuerza magnética.                                                                                                                                                   |  |
| 8.  | Ley de Ampere                                     | a) Aplicar la Ley de Ampere en la solución de problemas relacionados con fuerzas magnéticas sobre cargas en movimiento o sobre conductores que transportan corriente.                                                                   |  |
| 9.  | Ley de Inducción de<br>Faraday                    | a) Aplicar la Ley de Faraday en la solución de problemas que involucran fem y corriente.                                                                                                                                                |  |
| 10. | . Inductancia; la<br>energía y campo<br>magnético | a) Aplicar el concepto de inductancia en la solución de problemas que involucran flujo magnético.                                                                                                                                       |  |





|                                    | a) Describir las oscilaciones en circuitos LC y la cavidad electromagnética resonante.                                                |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 11. Oscilaciones electromagnéticas | b) Aplicar el análisis cuantitativo de las oscilaciones electromagnéticas en el cálculo de frecuencias de oscilación en circuitos LC. |  |  |
| 12. Corrientes alternas            | a) Aplicar el contenido de fem alterna en el cálculo de corriente alterna, potencia y resonancia de circuitos RCL.                    |  |  |

#### 6. Criterios de evaluación

| Criterios a Evaluar | Instrumento de evaluación | Porcentaje |
|---------------------|---------------------------|------------|
| Exámenes            | Exámenes                  | 80%        |
| Tareas              | Lista de cotejo           | 20%        |
| Porcentaje final    |                           | 100%       |

#### 7. Fuentes de información

#### Básica

Paul Tippens, Physics, Seventh Edition, Mc Graw Hill, 2007.

Giancoli, Douglas C., Física para Ciencias e Ingeniería con Física Moderna Vol. II, cuarta edición, Ed. Pearson Prentice Hall, México, 2009.

Tipler, Paul A. Física para la ciencia y tecnología Vol. 2, sexta edición, Ed. Reverté, España, 2010.

Hugh Young and Roger Freedman, University Physics Vol. 2, 15th Edition, Pearson Education, United States, 2020.





David Halliday, Robert Resnick, Jearl Walker, Fundamentals of Physics, Volume 2, 12th Edition, Wiley, 2021.

Andrew Rex and Richard Wolfson, Essential College Physics, Volume II, second edition, Cognella Academic Publishing, 2021.

### Complementaria

Matthew N.O. Sadiku, Elementos de electromagnetismo, Segunda edición, Publicaciones Cultural, 2013. Giambattista, Richardson, Física, primera edición, Mc Graw Hill, 2009