

1. Datos Generales de la Asignatura

Nombre de la asignatura		Clave	Ciclo Nominal
Dinámica y Control de Proces	sos	205312	IX
Departamento Académico	Ingeniería Aplicada		

Carácter	Teórica	Tipo	Obligatoria
		•	9

Asignaturas antecedentes	Asignaturas consecuentes
Procesos de Separación	Ninguna
Ingeniería de Reactores Homogéneos	

Horas teóricas	Horas prácticas	Horas de trabajo independiente	Horas por semana	Semanas por semestre	Horas por semestre	Valor en Créditos
4	0	0	4	16	64	4

Revisores del programa	Fecha de revisión	Fecha de visto bueno del H. Consejo Técnico
Academia de Dinámica y Control de Procesos	Marzo 2022	

2. Presentación de la Asignatura

Contextualización de la asignatura

En la formación de los Ingenieros Químicos es requisito obtener los conocimientos básicos de la modelación y comportamiento dinámico de un proceso tanto en lazo abierto (sin controlador) como en lazo cerrado (con controlador) temas que se abordan en esta asignatura con una profundidad acorde con el grado de Licenciatura.

Propuesta didáctico-metodológica			
Con la conducción del docente	Independiente	Modalidades informáticas (virtual)	
El docente expone y explica los temas del	Lo estudiantes realizan lecturas	Uso de software especializado	
programa de la asignatura y conduce la	de los temas, resuelven tareas,		
asimilación de los conocimientos a través del uso	usan software adecuado para la		
de herramientas computacionales y el análisis y	solución de problemas y		
discusión tipo taller.	fortalecen el trabajo en equipo.		

3. Atribuciones del Programa

Objetivo General

Proporcionar los elementos teóricos para analizar la dinámica y la estabilidad de procesos químicos, así como para diseñar un sistema de control automático

Objetivos Específicos (Indicadores)

Identificar los tipos de variables para el estudio de la Dinámica y Control de Procesos

Desarrollar modelos matemáticos dinámicos de procesos

Calcular y analizar el comportamiento dinámico de un proceso en lazo abierto

Realizar la sintonía o diseño de un controlador convencional PID

Calcular y analizar el comportamiento dinámico de un proceso en lazo cerrado bajo control retroalimentado

Aportación a los Atributos de Egreso del Programa Educativo			
Atributo	Nivel de Alcance	Evidencia	
Resolución de problemas.	Avanzado	Tareas, exámenes.	
2. Diseño de Ingeniería	Medio	Modelo matemático dinámico de procesos	
3. Experimentación	Avanzado (modalidad simulación)	Uso de software	

4. Comunicación	Medio	Informe del desarrollo de un modelo matemático de procesos
5. Ética		
6. Formación Continua	Avanzado	Informe del desarrollo de un modelo matemático de procesos
Trabajo Colaborativo	Avanzado	Modelo matemático de procesos

4. Perfil académico del docente

Grado académico	Licenciatura en Ingeniería Química
Experiencia	Dos años de experiencia docente en Educación Superior

5. Contenido temático

Temas	Subtemas
	a) Introducción al control de procesos.
1. Introducción	b) Objetivos y beneficios del control de procesos.
1. Introducción	c) Clasificación de variables
	d) Tipos de Configuraciones de control
	a) Razones para la modelación matemática
2. Modelación dinámica	b) Principios de la modelación matemática
	c) Ejemplos de modelación
de procesos	d) Linealización de modelos matemáticos
	e) Variables de desviación
	f) Desarrollo de Funciones de Transferencia
3. Comportamiento	a) Procesos de primer orden
dinámico de procesos	b) Procesos de segundo orden

	c) Procesos en serie
	d) Procesos con tiempo muerto
	e) Modelación empírica
	a) Lazo de control retroalimentado
	b) Instrumentación de un lazo de control
4. Control	c) Controladores PID
retroalimentado	d) Respuestas típicas de lazos de control retroalimentado
	e) Análisis de estabilidad de procesos
	f) Sintonía de controladores PID

6. Criterios de evaluación

Criterios a Evaluar	Instrumento de evaluación	Porcentaje
Examen parcial por cada tema	Examen	65
Tareas y participaciones	Tareas	15
Proyecto	Lista de cotejo	20
Porcentaje final		100%

7. Fuentes de información

Básica

Seborg, D.E., Mellicamp, D.A, Edgar, T.F., and. Doyle III, F.J. (2017), "Process Dynamics and Control", 4th Edition, John Wiley & Sons, Inc., USA.

Marlin, T. E., (2000), "Process Control: Designing Processes and Control Systems for Dynamic performance", Second Edition, McGraw-Hill, USA

Smith C.A. y Corripio, A. B., (2005), "Principles and Practice of Automatic Process Control", Third Edition, John Wiley & Sons, Inc., USA.

Stephanopoulos, G., (1984), "Chemical Process Control. An Introduction to Theory and Practice", First Edition, Prentice Hall, USA.

Bequette, B. W., (1998), "Process Dynamics: Modeling, Analysis and Simulation", First Edition. Prentice Hall, USA.

Bequette, B. W., (2003), "Control: Modeling, Analysis and Simulation", First Edition. Prentice Hall, USA.

Complementaria

http://pc-textbook.mcmaster.ca/ Página web del Dr. Thomas Marlin, McMaster University, Canadá